بخش دوه: هيدان الكَريكى

(x) الكتريكى مى گويند.

تست

$$
\begin{aligned}
& \text { (ヶ) } \\
& \text { س (} \\
& \text { غr غr } \\
& \text { (1 }
\end{aligned}
$$

$\mathrm{E}=\frac{\mathrm{F}}{|\mathrm{q}|} \xrightarrow{\mathrm{q}=-\mathrm{ne}=-|x| / 9 \times 10^{-19}} \mathrm{E}=\frac{10^{-19}}{\left|-1 / 9 \times 10^{-19}\right|}=\frac{10^{-19}}{1 / 9 \times 10^{-19}}=\frac{10^{r}}{1 / 9}=\frac{10^{q}}{19}=5 \mathrm{raN} / \mathrm{C}$

كزينهُ ب

ميدان الكتريكى حاصل از يكى ذره باردار
 داشــه باشـيم در اطرافـش ميدان الكتريكى وجود دارد كه به كمـــ قانون كولن و تعريف ميدان الكتريكى مىتوانيم مقــدار ميدان بار الكتريكى اين ذره را بهدست آوريم.
$\mathrm{E}=\frac{\mathrm{F}}{\mathrm{q}_{\circ}} \xrightarrow{\mathrm{F}=\mathrm{k} \frac{\mathrm{qq}_{\circ}}{\mathrm{r}^{r}}} \mathrm{E}=\frac{\frac{\mathrm{kqq}_{\circ}}{\mathrm{r}^{r}}}{\mathrm{q}_{\circ}} \Rightarrow \mathrm{E}=\frac{\mathrm{kq}}{\mathrm{r}^{r}}$

μ

$E=k \frac{|q|}{r^{r}} \Rightarrow E=9 \times 10^{q} \times \frac{r 0 \times 10^{-q}}{1^{r}}=1 \Lambda \circ \times 10^{r}=1 / \wedge \times 10^{\Delta} \mathrm{N} / \mathrm{C}$

ميدان الكتريكى حاصل از بار q با مجذور فاصله از بار نسبت وارون و با اندازة بار نسبت مستقيم دارد، يعنى

(1) اكَ ميدان حاصل از ذرة باردارى در فاصله r از آن خواسـته شـود و چنانچهَ بار ذره در حال

$$
\frac{E_{r}}{E_{1}}=\frac{k \frac{\left|q_{r}\right|}{r^{r}}}{k \frac{\left|q_{\jmath}\right|}{r^{r}}}=\left|\frac{q_{r}}{q_{l}}\right|
$$

اكر بار الكتريكى ذره ثابت باشــد و از بار الكتريكى دور شـويم، با ثابت بودن بار، ميدان كه با

$$
\frac{E_{r}}{E_{1}}=\frac{k \frac{|q|}{r_{r}^{r}}}{k \frac{|q|}{r_{1}^{r}}}=\left(\frac{r_{1}}{r_{r}}\right)^{r}
$$

مجذور (توان دو) فاصله نسبت وارون دارد، كاهش مى يابد و مىتوان نوشت:
 اطرافC وانC لوّرافC

$$
\begin{aligned}
& 1 / \wedge \times 10^{\circ} \text { (f } \\
& 1 / \wedge \times 10^{+} \text {(} \mu \\
& r \times 10^{9} \text { (r } \\
& \text { r×10 (1 }
\end{aligned}
$$

برايند ميدانهاى الكتريكى

$$
\begin{aligned}
& \text { وسط خط واصل بين دو بار چند برابر میشود؟ } \\
& \frac{1}{r}(f \quad r(r) \quad \text { r } 1 \text { (} \\
& \mathrm{q}_{1}=\mathrm{r} \mu \mathrm{C} \quad \stackrel{\mathrm{E}_{\mathrm{r}}}{\stackrel{r_{1}}{ }=\mathrm{r}_{\mathrm{ocm}}} \quad \stackrel{\mathrm{E}_{\mathrm{E}}}{\mathrm{r}_{\mathrm{r}}=\mathrm{r}_{\mathrm{o}} \mathrm{~cm}} \quad \mathrm{q}_{\mathrm{r}}=\lambda \mu \mathrm{C} \\
& \int E_{1}=k \frac{\left|q_{1}\right|}{r_{1}^{r}} \Rightarrow E_{1}=9 \times 10^{q} \times \frac{r \times 10^{-q}}{q 00 \times 10^{-r}}=r \times 10^{0} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

براى حالت دوم نيز داريم:

$$
\begin{aligned}
& \int E_{1}^{\prime}=k \frac{\left|q_{1}\right|}{r_{1}^{\prime r}} \Rightarrow E_{1}^{\prime}=9 \times 10^{q} \times \frac{r \times 10^{-q}}{r r \Delta \times 10^{-r}} \Rightarrow E_{1}^{\prime}=\lambda \times 10^{\Delta} \mathrm{N} / C \\
& \{ \\
& E_{r}^{\prime}=k \frac{\left|q_{r}\right|}{r_{r}^{\prime r}} \Rightarrow E_{r}^{\prime}=9 \times 10^{9} \times \frac{\Lambda \times 10^{-q}}{r r \Delta \times 10^{-r}} \Rightarrow E_{r}^{\prime}=r r \times 10^{\Delta} \mathrm{N} / \mathrm{C}
\end{aligned}
$$

بنابراين
راهحل دوم: وقتى فاصله از يك بار الكتريكى نصف شـود، ميدان الكتريكى بار در آن نقطه چهار برابر مىشـود. چرا؟ زيرا ميدان الكتريكى بار نقطهاى با
توجه به رابطةُ E=k $\frac{\text { r }}{}$

 از دو بار همجهت است.
بنابرايـن كوپکتر میتواند صفر باشد.

 بار در خلاف جهت هم است. بنابراين و نزديک بار كوپکتر مىتواند صفر باشد.

بـاسن الكتريكى
بـا حذف بار q ميدان در نقطه M، ميدان ناشـى از بـار مسئله اين ميدان برابر $\vec{E}_{Y}=-\frac{\vec{E}}{\mu}$ است بنابراين مىتوان نوشت:

$$
\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{r} \xrightarrow{\overrightarrow{\mathrm{E}}_{r}=-\frac{\overrightarrow{\mathrm{E}}}{r}} \overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{1}+\left(-\frac{\overrightarrow{\mathrm{E}}}{r}\right) \Rightarrow \overrightarrow{\mathrm{E}}_{1}=\frac{r \overrightarrow{\mathrm{E}}}{\mu}
$$

به

$$
\frac{\left|\vec{E}_{Y}\right|}{\left|\vec{E}_{1}\right|}=\frac{q_{Y}}{q_{1}} \Rightarrow \frac{\frac{\vec{E}}{r}}{\frac{r \vec{E}}{r}}=\frac{1}{r}
$$

تست V دو بار نقطهاى V ت
r ¢) در فاصله

re در فاصله
(خارج از خط واصل دو بار و نزديكى بار كوچکتر رسم مىكنيم، براى اينكه ميدان خالص در نقطهُ A صفر شود بايد اندازه́ ميدانها در نقطهُ موردنظر يكى باشد.

$$
\begin{aligned}
& E_{1}=E_{r} \Rightarrow k \frac{q_{1}}{x^{r}}=k \frac{q_{r}}{(r+x)^{r}} \Rightarrow \frac{1}{x^{r}}=\frac{q}{(r \circ+x)^{r}} \\
& \frac{1}{x}=\frac{r}{r_{0}+x} \Rightarrow r x=r_{0}+x \Rightarrow x=1 \circ \mathrm{~cm}
\end{aligned}
$$

IYy Ĺ lQU glo. .

 ($\mathrm{\circledast}$ ($1 \circ \mathrm{~cm}, \circ$)
(1) صفر (r
پـاستغ شـكل مسـأله رارسـم مى كنيم. مثلثهاى OBC و OBC متساوى الساقين و قائمالزاويه
نتطه C با هم برابر است.

$$
r=\sqrt{\left(10^{-1}\right)^{r}+\left(10^{-1}\right)^{r}}=\sqrt{r} \times 10^{-1} \mathrm{~m}
$$

$$
\Rightarrow E=q \times 10^{q} \times \frac{10 \times 10^{-q}}{r \times 10^{-r}} \Rightarrow E=\frac{q}{r} \times 10^{r} \mathrm{~N} / \mathrm{C}
$$

$$
E_{C}=\sqrt{E_{1}^{r}+E_{r}^{r}}=\sqrt{r E_{1}^{r}}=\sqrt{r} E_{1} \Rightarrow E_{C}=\frac{q \sqrt{r}}{r} \times 10^{r} \mathrm{~N} / \mathrm{C}
$$

(
 با توجه به آنتجه در رياضى چيايه هشـتم خرواند

شكل (ץ)
ميـدان نتيجه بار q منفى اسـت. ميدان E E
بزرگتر از بردار E است از اينرو | |

شكل (1)

ميدان E, ناشـى از بار q, به محل A به سوى خارج بار است، در نتيجه بار (مثبت اسـت. اماميدان q $_{\text {q }}$
 . $\left|q_{Y}\right|>\left|q_{1}\right|$ بيشتر است q_{1} ز q_{Y} بزرگتر از E, است بنابراين بار

كزينة 1

م $q_{1} \cdot\left|q^{\prime}\right|>\left|q_{\Gamma}\right|(1$

$$
\left\{\begin{array}{l}
E_{1}=k \frac{\left|q_{1}\right|}{r_{1}^{r}} \\
E_{r}=k \frac{\left|q_{r}\right|}{r_{r}^{r}}
\end{array} \xrightarrow{E_{1}=E_{r}=r \times 10^{0}} k \frac{\left|q_{1}\right|}{q \times 10^{-r}}=k \frac{\left|q_{r}\right|}{r v \times 10^{-r}} \Rightarrow \frac{\left|q_{1}\right|}{\left|q_{r}\right|}=\frac{q \times 10^{-r}}{r v \times 10^{-r}}=\frac{1}{r} \xrightarrow{q_{r}>0, q_{1}<0} \frac{q_{1}}{q_{r}}=-\frac{1}{r}\right.
$$

+97-97-9
چجند نيوتون بر كولن است؟ (k=9×1。
$9 \sqrt{r} \times 10^{2}(r$
$q \sqrt{V} \times 10^{V}$ (f

غ
$\int \overrightarrow{\mathrm{E}} \| \mathrm{AC}$
$\left\{\begin{array}{l}\mathrm{BC} \text { مورب }\end{array} \Rightarrow \alpha=\beta\right.$
حال بردار از ميدانهای

در تجزيه بردار $\overrightarrow{\text { E }}$ با توجه به مثلث ايجاد شــده و اطلاعات مسـئله، مىتوانيم

$$
\begin{aligned}
& E_{r}=k \frac{q_{r}}{A B^{r}} \Rightarrow E_{r}=9 \times 10^{q} \times \frac{r \times 10^{-q}}{r \times 10^{-r}}=9 \times 10^{v} \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

 با توجه به دو معادله́ (I) و (II) داريم:
I: $\sin \alpha=\frac{9 \times 10^{\vee}}{E} \Rightarrow \frac{9 \times 10^{V}}{E}=\frac{1}{\sqrt{\Delta}} \Rightarrow E=9 \sqrt{\Delta} \times 10^{\vee} N / C$
II $: \sin \alpha=\frac{1}{\sqrt{\Delta}}$

Ina Esini

خطوط ميدان الكتريكى

 شكل الف وب با دقت نگاه كنيد) Pr信

T「 هرحه تراكم خطوط در ناحيهاى بيشتر باشد، ميدان در آن ناحيه قوىتر است:
 بزرگتر و تعداد خطوط اطراف بار بيشتر است. (ا
 Fif خطهاى ميدان الكتريكى يكديگر را قطع نمى كنند، در واقع بردار ميدان الكتريكى در هر نقطه از فضا منحصر به فرد است. مثالهايى از رسم خطهاى ميدان الكتريكى: الف) خطهاى ميدان الكتريكى در جهت دور شدن از ذره باردار q+ است. ب) خطهاى ميدان الكتريكى به سمت ذره باردار q- است.

شكل (ب)
ت) نمايش سهبعدى خطوط ميدان براى يكى دو قطبى الكتريكى

شكل (ت)
ج) خطهاى ميدان الكتريكى اطراف دو بار منفى يكسان

شكل (ج)

شكل (ب)

ث) خطهاى ميدان الكتريكى اطراف دو بار مثبت يكسان

شیل (ث)

شكل (؟)

 از بار سـمت راست كوچكتر استر اسـت، زيرا خطهاى ميدان آن كمتر و تراكم خطوط در اطراف الـ
آن كمتر است.

Yol \& 194 glo.emininlungls
 آن كدام است؟ (g=1。N/kg)

				1
	$m g=\|q\| E \Rightarrow r \times$		/ C	خلاف جهت هم باشند
$\downarrow \mathrm{W}=\mathrm{mg}$	كزينهُ ب/	كريكى بايد رو به پايين بانش.	ورو وارد میشود. از اينر	اما بر بار منفى خلاف جهر

 1 (1) نيروى وزن (mg) رو به پايين
Y نيروى الكتريكى (Eq) كه چون بار مثبت است نيرو در جهت خطوط ميدان است.

چجون گوى در حال تعادل است پس نيروها بايد متوازن باشند.

تست 0
 $r \times 10^{9}$ (f
$\Delta \times 10^{9}$ (κ
9×10^{r} (Y
$r \times 10^{\circ}(1$

$$
\mathrm{W}=\mathrm{mg}=\circ / \mathrm{s} \mathrm{~N}
$$

:إناسنغ سه نيرو بر كلوله وارد مىشود:

() نيروى وزن كه توسط كرة زمين بر جسم وارد مىشود.
F = qE نيروى الكتريكى كه توسط ميدان بر بار وارد مىشود. (r

 خالص وارد بر كلوله صفر شود. با توجه به شكل مىتوان نوشت:

$$
\tan \mathrm{f} \Delta^{\circ}=\frac{\mathrm{F}}{\mathrm{~W}} \Rightarrow 1=\frac{\mathrm{F}}{\mathrm{~W}} \Rightarrow \mathrm{~F}=\mathrm{W} \Rightarrow \mathrm{Eq}=\mathrm{mg} \Rightarrow \mathrm{E} \times 1 \circ \times 10^{-s}=0 / s \Rightarrow \mathrm{E}=s \times 10^{\mathrm{f}} \mathrm{~N} / \mathrm{C}
$$

Yof EE YeY glo. mizinluogle.

\& \& اו- كدام گزينه در مورد ميدان الكتريكى صحيح مىباشد؟

٪) خاصيت فضاى اطراف بار الكتريكى است. Y 5

$$
\begin{array}{r}
\left(\mathrm{k}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{r} / \mathrm{C}^{r}\right. \\
r / \mathrm{V} \mu \times 10^{1 r}(1
\end{array}
$$

$f / r \times 10^{q}$ (f
r/rxioner
$r /$ VFp $\times 10^{9}$ (r

($\mathrm{F} / \Delta \times 10^{\circ} \mathrm{N} / \mathrm{C}$ $r / 4 \times 10^{-10}(r$
$\wedge \times 10^{0}(1$
$\wedge \times 10^{-1}(f$
$r / r \times 10^{-11}(\mu$
or محل اين بار چند نيوتون بر كولن خواهد بود؟

$$
1 / \wedge \times 10^{-r}\left(r \quad \Delta \times 10^{\wedge}(r) r \times 10^{-\Delta}(r) r \times 10^{-9}(1)\right.
$$

 نيرويى برابر با

ץץ ץ

$$
\text { (k=9×10 } \left.{ }^{9} N . m^{r} / C^{r}\right) \text { است؟ N/C }
$$

$1 / 4 \times 10^{f}$ (f
$r \times 10^{\mu}(\mu$
$r \times 10^{r}(r$
$10^{\circ}(1$

در تستهاى زير ميدان الكتريكى يك بار الكتريكى را در دو حالت مختلف با هم مقايسه مى كنيم.

^N/C شود؟ /
Folf
$\mu \circ(\mu$
rolr

1. (1

 از ازكتاب درسى

الكتريكى در مكان شمع (() جپند نيوتون بر كولن است؟
roolr
40. (1

9001 F
roo (μ

צسّا- نمودار E-r دو ذرة باردار A و B در فواصل مختلف رسم شده است. كدام گزينه درست است؟ از

$$
\begin{aligned}
& \left|\mathrm{q}_{\mathrm{A}}\right|>\left|\mathrm{q}_{\mathrm{B}}\right|(1 \\
& \left|\mathrm{q}_{\mathrm{A}}\right|=\left|\mathrm{q}_{\mathrm{B}}\right| \mathrm{r} \\
& \left|\mathrm{q}_{\mathrm{A}}\right|<\left|\mathrm{q}_{\mathrm{B}}\right|{ }^{(r} \\
& \text { (4) نمىتوان اظهارنظر قطعى كرد. }
\end{aligned}
$$

俍

$$
\begin{array}{ll}
\frac{9}{19} \times 10^{\mu}(r & \frac{9}{\lambda} \times 10^{\mu}(1) \\
9 \times 10^{\mu}(r & 0 / 9 \times 10^{\mu}(\mu
\end{array}
$$

rr

(r) ا) ثابت مىمیانديابد.

ميدان الكتريكى خالص حاصل از چند بار روى خط راست

$$
\frac{\wedge}{r \Delta}(f
$$

$$
\frac{r \Delta}{\Lambda}(r
$$

$$
\begin{gathered}
\frac{E_{r}}{r} \text { كدام است؟ } \frac{E_{1}}{E_{1}}\left(r \quad \frac{r}{r \Delta}(1\right.
\end{gathered}
$$

11000 (f

$$
9000(r
$$

r0.0 (r
(1) صفر

 ميدان الكتريكى خالص در نقطهُ M جند نيوتون بر كولن است؟

$$
\begin{array}{ll}
\Delta \times 10^{\mu}(r & 9 \times 10^{\mu}(1 \\
\Delta \times 10^{r}(\% & 9 \times 10^{r}(\mu
\end{array}
$$

كis
r
(F) بسته به شرايط هر كدام از كزينههاى ديگر مىتواند درست باشد.

است. نوع بار الكتريكى آنها بدترتيب كدام است؟

1) منفى - منفى

x x x جر جهت منیى

(lff برايند در نقطهُ M در شكل روبدرو كدام است؟
E
$\Delta E(r$
rE (r
4 E ()
در تستهاى زير دو حالت مختلف را با هم مقايسه مى كنيم.

 ميدان حند نيوتون بر كولن مىشود؟
Dooo (f) $Y_{\text {ooo (}}(\boldsymbol{r}$

$$
r_{000}(r
$$

$$
1000(1
$$

 است. هركاه يكى از بارها را به اندازة

$\Gamma / \Delta(\Gamma$
$r(r$
1/0 (1

 برابر E است؟ (q>0)
$\frac{f_{0}}{q}(f$
$\frac{r_{0}}{q}(r$

$$
\frac{10}{9}(r
$$

$$
\frac{p}{q}(1
$$

$$
\frac{r}{r}\left(f \quad \frac { \varphi } { r } \left(r \quad \frac{\Delta}{r}(r) \frac{\Delta}{r}()\right.\right.
$$

كi

$$
\frac{\vec{E}}{f}(r
$$

$$
-\frac{\overrightarrow{\mathrm{E}}}{r}(r
$$

برابر كدام خواهد شد؟ $\frac{\vec{E}}{r}$ (1

俍

$$
-\frac{1}{r}\left(r \quad \frac { 1 } { r } \left(r \quad-\frac{1}{r}()\right.\right.
$$

(101 =

n
$\frac{\Delta}{r}(\mu$
$\frac{r}{r}(r$
$\frac{r}{\mu}(1)$

- اهr

و اگر جاى دو بار عوض شود ميدان در اين نقطه

$$
-\frac{r}{r}(f
$$

در تستهاى زير ميدان الكتريكى خالص حاصل از بيش از دو بار رادر يك نقطه بررسى مى كنيم.

$1 / 01 F$

از آن برابر E باشد، در شكل مقابل اندازه́ برايند ميدانهاى الكتريكى حاصل از
سه بار الكتريكى نقطهاى
ب) صفر
F/O (r
r (1

$$
\Delta F^{\prime}(F
$$

$$
1 \wedge(\Gamma
$$

$$
-1 \wedge(r
$$

-af (1
(108 -

$$
-f(f
$$

$-r(r$

$$
+r(r
$$

$$
+t^{\prime}(1
$$

در تستهاى زير بايد نقطهاى را إيدا كنيم تا ميدان الكتريكى خالص در آن نقطه صفر شود.

در نقطهُ O به فاصلهُ
$\frac{q}{f}(f$
$\frac{r}{r}(r$

$$
-\frac{q}{r}(r
$$

$$
-\frac{r}{r}(1
$$

قرار دارند．در كدام ناحيه ميدان الكتريكى خالص حاصل از دو بار بار میتواند صفر شود؟ صا
$B(r$
A（1）
fr（F）در هيج نقطهاى ميدان خالص حاصل از دو بار صفر نمى شود．
C $(\boldsymbol{\mu}$

> اسـت. اگر جاى اين دو بار با يكديگر عوض شود، ميدان الكتريكى در نقطهُ M چِند نيوتون
> بر كولن خواهد شد؟
> $\mathrm{IV} / \Delta \times 10^{\wedge}(\mathrm{r}$
> $1 \mathrm{~N} / \Delta \times 10^{\wedge}$ (1
> $\mathrm{f} \times 10^{\wedge}(\mathrm{F}$
> $r / 1 \times 10^{\wedge}(\mu$

俍

$F\left(F \quad r(r) \frac{r}{r}(r) \frac{r}{r}(1)\right.$

$1014 \quad 19(\mu$

（ q．$_{1}$（نمودار مربوط به به

（نمودار مربوط به بار

و ميـدان خالص حاصل از آنها در نقطهُ A صفر اسـتـ．اكر بـار qu را قرينه كنيم ميدان الكتريكى در نقطهُ B صفر مىشود．AB جند سانتىمتر است؟

If ${ }^{(} r$
ir（1
lır

1人（r ral）
ir（f sir

ץ) ابتدا افزايش و سپس كاهش مىيابد. F F ابتدا كاهش و سپس افزايش مى يابد.

خارج تجربى－
$\frac{19}{9}(4$

D， C （ \boldsymbol{f}

الكتريكى در محل هر سه بار صفر شود．بار الكتريكى q جند ميكروكولن است؟
$-\frac{19}{9}(\mu$
$\frac{1}{a}(r$
$-\frac{1}{9}$（1
－أه مطابق شـكل سه بار الكتريكى نقطهاى مشابه
شــدهاند．برايند ميدانههاى الكتريكى حاصل از اين بارهــا در كدام نقطه يا نقطهها

C ${ }^{(}$

مى تواند صفر باشد؟
B（r

مطابق شـكل، ذرةٔ باردار -199 ＋
$(1 / \Delta m, r m)(r$
（ $\mathrm{rm}, \mathrm{l} / \Delta \mathrm{m}$ ）$(\boldsymbol{f}$

قرار دارد．در كدام نقطه ميدان الكتريكى برايند صفر مىشود؟
$(r m, ヶ m)(1$

$$
(-1 / \Delta m,-r m)(r
$$

ميدان الكتريكى خالص حاصل از چند بار الكتريكى نقطهاى خارج از راستاى خط راست

$$
10^{0}\left(r \quad 0 \times 10^{0}(r) \quad V \times 10^{0}(r) \quad 1 r \times 10^{0}(1\right.
$$

مربع، \
$r \sqrt{r} E_{1}(r$
rE) (1
${ }^{\mu} \mathrm{E}_{1}$ (f
$\sqrt{r} E_{1}(\mu$

$\mathrm{E}_{\mathrm{a}}<\mathrm{E}_{\mathrm{b}}<\mathrm{E}_{\mathrm{c}}$ ($\mathrm{E}_{\mathrm{a}}>\mathrm{E}_{\mathrm{b}}>\mathrm{E}_{\mathrm{c}}$ (r $\mathrm{E}_{\mathrm{a}}<\mathrm{E}_{\mathrm{c}}<\mathrm{E}_{\mathrm{b}}$ ($\mathrm{E}_{\mathrm{b}}>\mathrm{E}_{\mathrm{a}}>\mathrm{E}_{\mathrm{c}}$ (f)
 (وسط ضلع مثلث) جند نيوتون بر كولن است؟

$$
\begin{aligned}
& r \sqrt{r} \times 10^{r}(r \\
& r \sqrt{r} \times 10^{r}(r
\end{aligned}
$$

$$
r \times 10^{r}(1
$$

$$
\mu \times 10^{\nu}(\mu
$$

سه بار نقطهاى مطابق شكل روبهرو قرار دارند. بزرگى ميدان الكتريكى خالص در نقطهُ M جند نيوتون بر
$+9 r-$ -
كولن است؟
$\underset{\mu}{q} \times 10^{9}(r$
$\frac{q}{f} \times 10^{9}(r$
$\frac{1}{9} \times 10^{9} \quad(1$
$\frac{9}{19} \times 10^{9}(r$

$\Delta \times 10^{r}(r$
نيمدايره چند نيوتون بر كولن است؟
10×10^{r} (f

$$
\begin{aligned}
& 10^{\mu}(1 \\
& \mu \times 10^{\mu}(\mu
\end{aligned}
$$

 ذرههاى مجاور روى محيط هر مربع به فاصلهُ

> , وراست $\frac{r \mathrm{kq}}{\mathrm{d}^{r}}(\mathrm{r}$
> , 1
> $\xlongequal[\forall]{\rightleftharpoons} \frac{r \mathrm{kq}}{\mathrm{d}^{r}}(f$
> و $\frac{\mathrm{kq}}{\mathrm{d}^{r}}(\mu$
در تستهاى زير ميدان الكتريكى خالص را بر حسب i

" $\overline{\text { " }}$

$$
\begin{array}{r}
\quad\left(\mathrm{k}=9 \times 10^{q} \mathrm{~N} . \mathrm{m}^{r} / \mathrm{C}^{r}\right) \\
\overrightarrow{\mathrm{E}}=q \times 10^{r} \overrightarrow{\mathrm{i}}-\Lambda \times 10^{r} \overrightarrow{\mathrm{j}}(1 \\
\overrightarrow{\mathrm{E}}=-q \times 10^{r} \overrightarrow{\mathrm{i}}+\Lambda \times 10^{r} \overrightarrow{\mathrm{j}}(r \\
\overrightarrow{\mathrm{E}}=r / \Delta \times 10^{\circ} \overrightarrow{\mathrm{i}}-r \times 10^{\Delta} \overrightarrow{\mathrm{j}}(r \\
\overrightarrow{\mathrm{E}}=-r / \Delta \times 10^{\circ} \overrightarrow{\mathrm{i}}+r \times 10^{0} \overrightarrow{\mathrm{j}}(r
\end{array}
$$

- IV9

$$
\text { مختصات در SI كدام است؟ (k=9×10 } \left.{ }^{9} N \cdot m^{r} / C^{r}\right)
$$

$$
9 \times 10^{9} \vec{i}(1
$$

$$
-\Delta / \varphi \times 10^{\varphi} \vec{j}(r
$$

$$
10^{9} \times(V / r \vec{i}-\Delta / \varphi \vec{j})(\mu
$$

$$
(\Delta / \varphi \vec{i}-v / \gamma \vec{j}) \times 10^{\varphi}(\varphi
$$

IA。

$+\frac{q-\text { - }}{9 \sqrt{r} \times 10^{0}(r}$
$9 \sqrt{\Delta} \times 10^{0}(r$
نقطء́

$$
\begin{array}{r}
9 \times 10^{0}(1 \\
9 \sqrt{\mu} \times 10^{\circ}(\mu
\end{array}
$$

در تستهاى زير مىخواهيم ميدان خالص در يك نقطه صفر شود.

" إرج رياضى -

> برابر صفر شود؟
(1 ()
F (Y
٪)
(f) ه

ميدان الكتريكى در نقطه O (مركز دايره) برابر صفر شود؟

$$
\begin{array}{r}
-r(r \\
-r \sqrt{r}(r
\end{array}
$$

$$
\begin{array}{r}
r(1 \\
r \sqrt{r}(r
\end{array}
$$

أز مون مدارس برتر

ميكروكولن است؟
$r \sqrt{r}(1$
$\sqrt{r}(r$
$-r \sqrt{r}(r$
$-\sqrt{r}$ (F

> در دو تست زير به زاويه ميدان خالص توجه كنيد.

- ا^AF

$\frac{\sqrt{r}}{r}(r$
است. $\frac{q_{1}}{q^{\prime}}$ كدام
$\sqrt{r}(f$

$$
\begin{align*}
& \frac{\sqrt{\mu}}{\mu}() \\
& \frac{\sqrt{\mu}}{\mu}(\mu
\end{align*}
$$

$$
\begin{array}{ll}
\frac{\partial}{1 r}(r & \frac{r \Delta}{1 \mu q}(1 \\
\frac{1 F F}{r \Delta}(F & \frac{1 r}{\Delta}(\mu
\end{array}
$$

خطهاى ميدان الكتر يكى

از كتاب درسى

پرسشهای چهارگزیینهای سطح دوم
 ; روى خط وصلكننده دو بار و در امتداد اين خط با هم برابر است. فاصلهُ اين دو نقطه از هم چچند سانتىمتر است؟

$$
\begin{array}{llll}
\Lambda_{0}(F & \varphi_{0}(\mu & F_{0}(r & r_{0}(1)
\end{array}
$$

я \& ¢
بين دو بار كه ميدان خالص حاصل از دو بار در آن نقطه صفر میشود cm ا از بار
1/0 (f
$\mu(r) \quad r(r$
$1(1$

 خطهاى ميدان الكتريكى در اطراف دو كره در حالت جديد به كدام شكل خواهد بود؟

 الكتريكى وارد بر ذره بهصورت

B (r
A (1)
D $\left.{ }^{(}\right)$
C $\left.{ }^{(}\right)$
צ شدهاند. ميدان الكتريكى حاصل از اين بارها در مركز دايره چند آند نيوتون بر كولن است؟
$10^{2}(f$
$\Delta \times 10^{9}(\mu$
$r / \Delta \times 10^{9}(r$
(1) صفر
 ميدانهاى الكتريكى اين ه بار در مركز دايره برابر است با

$$
\frac{\mathrm{kq}}{\mathrm{r}^{r}}\left(\mathrm { F } \quad \frac { \mathrm { kgq } } { \mathrm { r } ^ { r } } \left(r \quad \frac{\Delta \mathrm{kq}}{\mathrm{r}^{r}}(r \quad \text { صel }\right.\right.
$$

 حلقه چند نيوتون بر كولن است؟

$$
1 / \wedge \times 10^{V}(r
$$

$$
9 \times 10^{4}(1
$$

(Y) با دادهمهاى مسأله قابل محاسبه نيست.
(
Mr - FIr

$$
\begin{aligned}
\vec{E} & =-1 \wedge \times 10^{9} \vec{i}+9 \times 10^{9} \vec{j}(1 \\
E & =-r q \times 10^{9} \vec{i}+9 \times 10^{9} \vec{j}(r \\
\vec{E} & =r q \times 10^{9} \vec{i}-1 \wedge \times 10^{9} \vec{j}(r \\
E & =-r q \times 10^{9} \vec{i}+1 \wedge \times 10^{9} \vec{j}(r
\end{aligned}
$$

 برابر
ابتدا بار هسته راحساب مىكنيم، سيس ميدان الكتريكى را بهدست مى آوريم: $\mathrm{q}=+\mathrm{ne} \Rightarrow \mathrm{q}=+r 9 \times 1 / q \times 10^{-19}=\mu 1 / 9 \times 10^{-19} \mathrm{C}$
$\mathrm{E}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}^{r}}=q \times 10^{q} \times \frac{\mu \mathrm{F} / q \times 10^{-19}}{10^{-r o}}=r \mathrm{r} \varphi / q \times 10^{10} \mathrm{~N} / \mathrm{C}$
$=r / V \varphi f \times 10^{1 r} \mathrm{~N} / \mathrm{C}=r / V \varphi f \times 10^{9} \mathrm{kN} / \mathrm{C}$
 در دو نتطهُ كته شـده فاصله تابر q يكسـن است بار بنابراين اندازة ميدان در اين دو نتطه
$\mathrm{E}_{1}=\mathrm{E}_{\mathrm{r}}=\mathrm{F} \cdot \mathrm{N} / \mathrm{C}$ برابر است.

شكل (الف)

در واقع در تمام نقاطى كه فاصلةُ يكسانى از ذره دارند، ميدان الكتريكى هم اندازه است
 به اين مطلب و رسم شكل (الف) مشخص مى شود كه بايد بار q مثبت باشد، زيرا جهت ميدان به سوى خارج بار است، بنابراين مطابق شكل (ب) جهت ميدان در شرق اين ذره باردار بايد در جهت شرق (به سمت خارج بار) باشد.
(F IT9 A
الكتريكى و اندازء́ نيروى وارد بر آن، بهصورت E=
$\mathrm{E}=\frac{\mathrm{F}}{|\mathrm{q}|} \Rightarrow \mathrm{F}=|\mathrm{q}| \mathrm{E} \Rightarrow \mathrm{F}=\mu / r \times 10^{-s} \times r / \Delta \times 10^{\Delta} \Rightarrow F=\lambda \times 10^{-1} \mathrm{~N}$
 واقع بار الكتريكى در آن نقطه بهصورت E=
$E_{1}=\frac{F_{1 r}}{\left|q_{r}\right|} \Rightarrow E_{1}=\frac{r_{0}}{9 \times 10^{-r}} \Rightarrow E_{1}=\Delta \times 10^{\wedge} \mathrm{N} / \mathrm{C}$
(1) ITI A . $\mathrm{E}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}^{r}}$
F=Eq \quad نيروى وارد بر يك ذره داخل ميدان الكتريكى برابر است با: (Y
 $\mathrm{E}=\mathrm{k} \frac{\mathrm{q}}{\mathrm{r}^{r}} \Rightarrow 10^{0}=q \times 10^{q} \times \frac{\mathrm{q}}{q_{000 \times 10^{-r}}} \Rightarrow \mathrm{q}=10^{-9} \mathrm{C} \Rightarrow \mathrm{q}=1 \mu \mathrm{C}: \mathrm{q}$
 $F=E q^{\prime} \Rightarrow 0 / \circ r=10^{\circ} \times q^{\prime} \Rightarrow r \times 10^{-r}=10^{\circ} q^{\prime} \quad$ بار الكتريكى q^{\prime} بواهد شدر بر بر $\Rightarrow q^{\prime}=r \times 10^{-v} C=r \times 10^{-1} \mu C \Rightarrow q^{\prime}=0 / r \mu C$

, A ابتـدا فاصلة بين دو نقطهُ ATM A $\mathrm{r}=\sqrt{(r)^{r}+(\varsigma)^{r}}=\sqrt{\varphi \Delta}=r \sqrt{\Delta \mathrm{~cm}} \mathrm{~cm}$ حال ميدان حاصل از بار snC رادر فاصلةُ : $\mathrm{r} \sqrt{\Delta} \mathrm{cm}$ $E=k \frac{q}{r^{r}}=9 \times 10^{9} \times \frac{4 \times 10^{-q}}{\left(r \sqrt{\Delta} \times 10^{-r}\right)^{r}}$
$\mathrm{E}=9 \times 10^{q} \times \frac{\varphi \times 10^{-q}}{\mu \Delta \times 10^{-\mu}} \Rightarrow \mathrm{E}=\frac{\Delta \psi}{\mu \Delta} \times 10^{\mu}=\frac{r r}{10} \times 10^{\mu}=1 / r \times 10^{\mu} \mathrm{N} / \mathrm{C}$

با توجه به شكل مىتوان نوشت:
$\left\{\begin{array}{l}\mathrm{F} \cos \alpha=T_{1} \cos (\varphi \Delta+\alpha) \\ \mathrm{F} \cos \alpha=T_{\Gamma} \cos (\varphi \Delta-\alpha)\end{array} \Rightarrow \mathrm{T}_{1} \cos (\varphi \Delta+\alpha)=\mathrm{T}_{\Gamma} \cos (\varphi \Delta-\alpha)\right.$
اكنون بايد زاويهُ α رابهدست آوريم. زاويهُ β ، زاويهُ خارجى مثلث ABE است، پس: $\beta=r \Delta^{\circ}+r \circ^{\circ}=V \Delta^{\circ}$
در مثلث BED داريم:
$\alpha+\beta+90^{\circ}=10^{\circ} \Rightarrow \alpha+v 0^{\circ}+90^{\circ}=110^{\circ} \Rightarrow \alpha=10^{\circ}$
اكنون α راجايگزين مى كنيم:
$T_{1} \cos \left(r 0^{\circ}+10^{\circ}\right)=T_{r} \cos \left(\varphi 0^{\circ}-10^{\circ}\right) \Rightarrow T_{1} \times \frac{1}{r}=T_{r} \times \frac{\sqrt{r}}{r} \Rightarrow \frac{T_{1}}{T_{r}}=\sqrt{r}$

	俍
	كر0مىدهيم، بارها
	حالـت اول اسـتا
	(F) ${ }_{\text {(}}^{\text {ب }}$)

(1Y\& B

 يعنى كاهش فاصلةُ بار q تا ورقهُ فلزى و زياد شدن اندازة بار ناهمنام القايى روى آن باعث مى شـود كـه اندازة نيروى جاذبهُ الكتريكـى وارد بر بار q ا فزايش يافتــــه و و در نتيجه طبق قانون دوم نيوتون اندازةُ شتاب ذرة́ باردار qنيز رفتهرفته زيادتر شود. د范 A ديگر نيرو وارد مىشـود. اين خاصيت فضا راميدان الكتريكى مى گويند. ميدان الكتريكى هر نقطه از ميدان بهصورت زير تعريف مىشود:
$\overrightarrow{\mathrm{E}}=\frac{\overrightarrow{\mathrm{F}}}{\mathrm{q}} \underset{{ }_{\mathrm{C}}}{\Rightarrow}[\mathrm{E}]=\frac{\mathrm{N}}{\mathrm{C}}$
بنابراين ميدان الكتريكى كميتى است بردارى و يكاى آن N/C مىباشد.

 الكتريكى خاصيتى است كه بارهاى الكتريكى در فضاى اطراف خود ايجادمى كنند و از نظر كمّى
در هر نقطه برابر نيروى الكتريكى وارد بر بار الكتريكى مثبت يك يكى كولنى واقع در آن نقطه استى استى

r19
(

 + برداشته وبهبار + + + / $ا$ بار $/ \Delta \mu \mathrm{H} \mathrm{C}$ $+\ulcorner\mu \mathrm{C}-\circ / \Delta \mu \mathrm{C}=1 / \Delta \mu \mathrm{C} \quad, \quad-\uparrow \mu \mathrm{C}+\circ / \Delta \mu \mathrm{C}=-1 / \Delta \mu \mathrm{C}$
بـا كاهش بـار (از جمله در محل بار q $\left.\downarrow=k \frac{q_{r} \downarrow}{r^{r}}\right)$
 شود ميدان الكتريكى روى يك بار نقطهاى تعريف نشده است.

(1) هر دو بار مثبتاند سِ ميدان حاصل از هر بار به سمت خارج آنها است.

$E_{1}=\frac{\mathrm{kq}_{1}}{\mathrm{r}_{1}^{r}}=\frac{9 \times 10^{9} \times 1 \times 10^{-9}}{1}=9 \times 10^{r} \mathrm{~N} / \mathrm{C}$
$E_{r}=\frac{\mathrm{kq}_{r}}{\mathrm{r}_{r}^{r}}=\frac{9 \times 10^{9} \times \mu \times 10^{-\varphi}}{r}=9 \times 10^{r} \mathrm{~N} / \mathrm{C}$
ايـن دو ميــدان الكتريكى خلاف جهـت هماند پس ميدان خالـص در نتطة O Oهصورت $\mathrm{E}_{\mathrm{T}}=\mathrm{E}_{1}-\mathrm{E}_{\mathrm{r}}=$ 。

روبهرو بهدست مى آيد:

 از هـر ذره را در آن نقطـه بهدسـت مى آوريـم: ا) اگَر ميدانهــا همجهـــت باشــند $\mathrm{E}_{\mathrm{T}}=\left|\mathrm{E}_{1}-\mathrm{E}_{\mathrm{Y}}\right|$ اگر ميدانها خلاف هم باشند $\mathrm{K}_{\mathrm{T}}=\mathrm{E}_{1}+\mathrm{E}_{\mathrm{r}}$
$q_{1}=1 \mu \mathrm{C} \quad \mathrm{q}_{\gamma}=-1 \mu \mathrm{C} \quad \mathrm{M} \quad$, E_{Y}

$\left\{\begin{array}{l}E_{1}=k \frac{q_{1}}{r_{1}^{r}}=9 \times 10^{q} \times \frac{10^{-9}}{9 a^{r}} \\ E_{r}=k \frac{\left|q_{r}\right|}{r_{r}^{r}}=9 \times 10^{9} \times \frac{10^{-9}}{a^{r}}\end{array}\right.$

برابر $9 \times 10^{r} \mathrm{C}$ / است.

 بار

خلاف جهت هم هستند و ميدان الكتريكى خالص در نتطه M M خواهد شد: $\mathrm{E}=\left|\mathrm{E}_{\mathrm{r}}-\mathrm{E}_{1}\right|=\left|9 \times 10^{r}-10^{\mu}\right|=\left|(9-1) \times 10^{r}\right|=\lambda \times 10^{\mu} \mathrm{N} / \mathrm{C}$
(1 IMFA
كرده تابا تقسيم آنها بر هم كميتهايى كه در اين دوحالت تغيير نكردماند، باهم ساده شوند.
$E_{1}=\frac{k q}{r_{1}^{r}} \Rightarrow \left\lvert\, \Lambda=k \frac{q}{r_{00 \times 10^{-r}}^{l}}\right.:(1)$ حالت
 $\Rightarrow r_{r}=r_{0} \times 10^{-r} \mathrm{~m}=r_{\circ} \mathrm{cm} \Rightarrow \Delta r=r_{r}-r_{1}=r_{0}-r_{0}=1 . \mathrm{cm}$

تست Tا در شكل زير، اگر اندازٔ ميدان الكتريكى حاصل از بار نقطهاى q در نقاط

(1 1MFA
$E=k \frac{q}{r^{r}}=k \frac{q}{d^{r}}$
حالت (Y): به ذره با بار q، بار Yq- اضافه شده پس:
$q_{r}=q+(-r q)=-r q, E^{\prime}=k \frac{q^{\prime}}{r^{r r}}=k \frac{r q}{(r d)^{r}}$
حال براى آنكه كميتهاى يكسان اين دو رابطه ساده شوند، اين دو رابر هم تقسيم مى كنيم: $\frac{E^{\prime}}{E}=\frac{q^{\prime}}{q} \times\left(\frac{r}{r^{\prime}}\right)^{r} \Rightarrow \frac{E^{\prime}}{E}=\frac{r q}{q} \times\left(\frac{d}{r d}\right)^{r} \Rightarrow \frac{E^{\prime}}{E}=\frac{r}{q}$

، E=k $\frac{q}{r^{r}}$ ابتدا ميدان را در هر دو حالت با توجه به دادههاى مسأله ورابطه Ira A $E_{1}=k \frac{q}{r_{1}^{r}} \Rightarrow E_{1}=k \frac{q}{r^{r}}, E_{r}=k \frac{q}{r_{r}^{r}} \Rightarrow E_{r}=k \frac{q}{r^{r}} \quad$ بdدست می آوريم:

براى بهدست آوردن نسبت دو ميدان، آنها را بر هم تقسيم مى كنيم: $\frac{E_{1}}{E_{r}}=\left(\frac{r_{r}}{r_{1}}\right)^{r} \Rightarrow \frac{E_{1}}{E_{r}}=\left(\frac{r}{r}\right)^{r} \Rightarrow E_{1}=\frac{q}{r} E_{r}$

با توجه به فرض مسأله خواهيم داشت:
$E_{1}-E_{r}=r \Delta_{0} \Rightarrow \frac{q}{r} E_{r}-E_{r}=r \Delta_{0} \Rightarrow \frac{\Delta}{r} E_{r}=r \Delta_{0} \Rightarrow E_{r}=r \circ N / C$
$E_{1}=\frac{q}{r} \times r \cdots=r \Delta \cdot N / C$

$E_{A}=q \mathrm{kN} / \mathrm{C}=q \times 10^{r}=\frac{\mathrm{kq}}{\mathrm{r}_{\mathrm{A}}^{r}}$
$E_{B}=\frac{k q}{r_{B}^{r}} \Rightarrow \frac{E_{A}}{E_{B}}=\left(\frac{r_{B}}{r_{A}}\right)^{r}$
$\Rightarrow \frac{9 \times 10^{r}}{\mathrm{E}_{\mathrm{B}}}=\left(\frac{19}{1}\right) \Rightarrow \mathrm{E}_{\mathrm{B}}=\frac{9}{19} \times 10^{r} \mathrm{~N} / \mathrm{C}$
 (باشد، اندازة ميدان برايند در نقطهُ O در شكل مقابل چند برابر E خواهد بود؟

($\sqrt{\text { 5ز }}$
$\frac{v}{q}(1$
$\frac{1}{s}(r$
$r a r$
If (f

خ IFD A را بـه وجـود آورده (E=k $\frac{\text { q }}{\text { r }}$) رابطـة مسـتقيم دارد. ميـدان خالـص در حالـت اول $\overrightarrow{\mathrm{E}}_{\mathrm{T}}=\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{\mathrm{r}}$

بهصورت روبهرو است

چحـون هر بار دو برابر شــده اسـتـ، اندازء ميدان هـر بار در نقطهُ C ، دو برابر مىشـود. بنابراين ميدان خالص در حالت دوم بهصورت زير است. $\vec{E}_{T}^{\prime}=r \vec{E}_{1}+r \vec{E}_{r}=r\left(\vec{E}_{1}+\vec{E}_{r}\right)=r \vec{E}_{T} \Rightarrow E_{T}^{\prime}=r \times 1 \ldots 0=r \ldots N / C$
(1F9 B

1) با توجه به علامت بارهاجهتميدان حاصل از
 خالص در اين نتطه برابر مجموع ميدانهر يك از بارها، يعنى برابر \upharpoonright بی مى شود.

r
مى شود، فاصلهُ آن بار از نتطهُ C نصف(مىشود وميدان مربوط به آن بار، \ddagger برابر میشود.
 (برابر میشود. $\left.\frac{\Delta \mathrm{E}}{\mathrm{r}}=r / \Delta\right)$

(q q q q q
$E_{A}=E_{1}+E_{r} \xrightarrow[E_{A}=E]{E_{1}=E_{r}} E=r E_{1}$

فاصلـهُ بـار q- تانقطá B ، نصف فاصلهُ آن تا نقطaُ A اسـت و ميدان الكتريكى آن Y برابر ميدان در نتطة́ A میشود $E_{r}^{\prime}=\frac{f}{q} E_{r}$.

:
$E_{B}=E_{r}^{\prime}+E_{1}^{\prime}=\frac{r}{q} E_{r}+r E_{1} \xrightarrow{E_{r}=E_{1}} E_{B}=\frac{\mu+r q}{q} E_{1}=\frac{\mu_{0}}{q} E_{1}$
$\frac{E_{B}}{E}=\frac{\frac{r_{0}}{q} E_{1}}{r E_{1}}=\frac{r_{0}}{q}$
در اين صورت:
(برايند \vec{E} F IFY B

1) در اين شكل q/ منفى و

مثبت و برايند ميدانها به سـوى
راست است:

(r در اين شكل q هسـتند و
برايند ميدانهــا در اين حالت نيز
به سوى راست است:

r هسـتند و | هر برايند ميدانهـا در اين حالت نيز
به سوى راست است:

در نتيجه بسته به شرايط هر سه حالت مىتواند درست باشد.
 q/
 $E_{1}=\frac{k(r q)}{(r a)^{r}}=\frac{k q}{r a^{r}} \quad, \quad E_{r}=\frac{k q}{a^{r}}$

 ميدانها را از هم كم مى كنيم:
$E_{T_{A}}=E_{r}-E_{1}=\frac{k q}{a^{r}}-\frac{k q}{r a^{r}}=\frac{k q}{r a^{r}}$
-rq و qq (1 IFF B

حساب مىكنيه.
$E_{1}=\frac{k \times r q}{(r d)^{r}}=\frac{k q}{d^{r}} \quad$ (1) $\quad, \quad E_{r}=\frac{k \times r q}{d^{r}}=r \frac{k q}{d^{r}}$

 مى باشد. حال ميدانهاى EY

(r) $(\mathrm{r}): E_{r}=r \frac{\mathrm{kq}}{d^{r}} \Rightarrow E_{r}=r E$
$\xrightarrow{\text { هم } \mathrm{E}_{\mathrm{r}}, \mathrm{E}_{1}} \mathrm{E}_{\mathrm{T}}=\mathrm{E}_{1}+\mathrm{E}_{\mathrm{r}}=\mathrm{E}+\mu \mathrm{E} \Rightarrow \mathrm{E}_{\mathrm{r}}=\varphi \mathrm{E}$
 $\overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{r} \xrightarrow{\overrightarrow{\mathrm{E}}_{1}=\overrightarrow{\mathrm{E}}_{r}} \overrightarrow{\mathrm{E}}=r \overrightarrow{\mathrm{E}}_{1} \Rightarrow \overrightarrow{\mathrm{E}}_{1}=\frac{\overrightarrow{\mathrm{E}}}{r}, \overrightarrow{\mathrm{E}}_{r}=\frac{\overrightarrow{\mathrm{E}}}{r}:$ كرهاست، از إن بـاحذف بار qu .برابر A

 دك rooN/C

كنكور,

Y

مذكور چخند نيوتون بر كولن خواهد بود؟
D. (r
rv/a (1
100 (f
Vo (
ابتدا به يادآورى نكات زير میيرداريميم:
$f 100$

- اگر دوبار همنام باشـند، ميدان حاصل از دو بار در نقطهاى بين آنها، در خلاف جهت

هم است.

- اگر دوبار ناهمنام باشند ميدان حاصل از دو بار در نقطهاى بين آنها، همجهت است.

 در حالت اول برايند ميدانها برابر $\overrightarrow{\text { E بوده است، از اينرو: }}$
$\begin{aligned} & \overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{1}+\overrightarrow{\mathrm{E}}_{r} \\ & \overrightarrow{\mathrm{E}}_{\mathrm{r}}=-\overrightarrow{\mathrm{E}}\end{aligned} \Rightarrow \overrightarrow{\mathrm{E}}=\overrightarrow{\mathrm{E}}_{1}-\overrightarrow{\mathrm{E}} \Rightarrow \overrightarrow{\mathrm{E}}_{1}=r \overrightarrow{\mathrm{E}}$

$\left\{\begin{array}{l}E_{1}=r E \\ E_{r}=E\end{array} \Rightarrow E_{1}=r E_{r} \Rightarrow \frac{k_{1}}{r_{00 \times 10^{-r}}}=r \times \frac{k_{q_{r}}}{1 q_{00 \times 10^{-r}}} \Rightarrow \frac{q_{1}}{q_{r}}=\frac{1}{r}\right.$

تست

برابر

$\underline{\underline{\text { T }}}$

$$
\begin{aligned}
& \left|\mathrm{q}_{\mathrm{A}}\right|=\frac{\Delta}{\mathrm{S}}\left|\mathrm{q}_{\mathrm{B}}\right| \text { و ناهمنام (} \\
& \left|q_{B}\right|=\frac{\Delta}{r}\left|q_{A}\right| \text { ناهم } \\
& \left|q_{A}\right|=\frac{\Delta}{r}\left|q_{B}\right| \text { (} \\
& \left|q_{B}\right|=\frac{\Delta}{r}\left|q_{A}\right| \text { ومنام }
\end{aligned}
$$

 جنانجه بار دو برابر شود ميدان در آن نتطه دو برابر میشود و اگر بار سه برابر C بار شود ميدان در آن نقطه سه برابر شود. در حل اين مسئله ميدان بار الكتريكى q در نقطهُ M را برابـر E فـرض مى آنيم. در اين صورت ميـدان الكتريكى بار \&q در همان فاصله
 ميدان الكتريكى بار مثبت (E')+4q) نيز به سمت چب است در نتيجه ميدان برايند در

نتطةُ M مجموع دو ميدان E و \& \& است.
$E_{1}=E+r E=\Delta E$

اكر از بار q- نصف بار را برداريم معدار بار الكتريكى آن q q صورت ميدان الكتريكى اين بار در نقطهُ M نصف مىشود (E) و و همچنان جهت ميدان به سمت چي است. با دادن بار و ميدان حاصل از اين بار نيز برايند در اين حالت برابر است با: $E_{r}=\frac{E}{r}+\frac{v}{r} E=r E$
بنابراين نسبت
$\frac{E_{1}}{E_{r}}=\frac{\Delta E}{\mu E}=\frac{\Delta}{\mu}$

تذكر: به توضيحات مغصل ما نگاه نكنيد حل اين تست بايد در زمان كوتاهى انجام شود تنهـا بايـد دقت كنيد كه در حل اين مســائل ميدان يك بار را مشـخص كرده و به كمك رابطة
 بهدست مىآوريم.
$E_{1}=\frac{k q}{\left(\frac{d}{r}\right)^{r}} \Rightarrow E_{1}=\frac{q k q}{d^{r}} \quad, \quad E_{r}=\frac{k(r q)}{\left(\frac{r d}{r}\right)^{r}} \Rightarrow E_{r}=\frac{q}{r}\left(\frac{k \times r q}{d^{r}}\right)=q \frac{k q}{d^{r}}$

A بنابرايـن A همهجهت و به سـمت راسـتاند و ميــدان خالص در نقطه A ، جمـع ميدانهاى

