

مغيوم تابع
تابع B عضو مجموعهى B نسبت مىدهد.

(لف)

(ب)
(*) لطفاً قبل از پرداختن به محتوى كتاب به نحوهى مطالعهى كتاب در مقدمه بپردازيد.

مثال (1 آيا f (Y) $A \rightarrow B$ مطابق شكل زير مى تواند تابع باشد؟ حل: خير. زيرا

تمرين ا. در كدام يك از حالتهاى زير، رابطهى $f: R \rightarrow R$ تابع مىباشد.
فالف) $f(x)=\frac{1}{x}$
ب) $f(x)^{r}=x$
ج) $f(x)^{\mu}=x$

د) $f(x)^{\mu}=x^{r}$
ヵ) $f\left(x^{ヶ}\right)=x$

تابع ($f(x)$ ر امىتوان روى صفحهى x-y نمايش داد، بهطورى كه محور y ها بيانگر مقادير $f(x)$ باشد.

به عنوان مثال داريم:

بنابر تعريف تابع مى توان نتيجه گَرفت هر خط موازى محور y ها مىتواند حداكثر يكبار نمودار تابع را قطع كند. مثلاً نمودار

مثال (

دو بار نمودار تابع را قطع كند.) حل: چنين تابعى وجود دارد. به عنوان مثال دار يهم:

r آشنايى با توابع

 ريشهى حقيقى داشته باشد؟ (يعنى اگر تابع را در صفحهى x-y رسم كنيه، هر خط موازى محور x ها

دقيقاً سه بار نمودار تابع را قطع كند. (ردئى

تابع يك به يك
در تابع $f(x)=f(y) \Rightarrow x=y \Rightarrow$ يك به يك است $f(x)$

يك خواهد بود.

به عبارت ديگَر نمودار تابع f بايد هر خط موازى محور X ها را حداكثر يكبار قطع كند. به عنوان مثال تابع $f(x)=x^{r}$ يك به يكى است.

مثال (حل: اين تابع يك به يك نيست. از آنجا كه f

مثال (ع آيا تابع C ($f: R \rightarrow R$ با ضابطهى $f(x)=r x^{\mu}+x$ يكى به يكى است؟ حل: اگر $f(x)=f(y)$ باشد، داريم:

$$
\begin{aligned}
r x^{r}+x=r y^{r}+y & \Leftrightarrow r\left(x^{r}-y^{r}\right)=y-x \quad: \\
& \Leftrightarrow r(x-y)\left(x^{r}+x y+y^{r}\right)=y-x \\
& \Leftrightarrow x^{r}+x y+y^{r}=-\frac{1}{r}
\end{aligned}
$$

 حقيقى ندارد. و براى درست بودن ** بايد x=y باشد. يعنى تابع مورد نظر يك به يك است.

تمرين

راهنمايى: با آوردن مثال نقض نشان دهيد $f(x)+x$ لزوماً يك به يك نيست. براى ساير توابع اثبات كنيد آنها يكى به يك هستند.

 لزوماً يكى به يكى هستند؟

تابع پوشا
تابع $f: A \rightarrow B$ را پوشا گوييم، هر گاه f بتواند هر مقدار متعلق به B را توليد كند:
$\left.\forall y \in B, \exists x \in A ; f(x)=y \quad{ }^{*}\right)$

$f(x)$ به عنوان مثال تابع $f: R \rightarrow R^{+} \bigcup\{0\}$ كه $f(x)=x^{\zeta}$ كه f است
 كرده

اما تابع منفى را توليد نمى كند.)

 f(A) يوشا است.

تمرين ه. تابع $f: R \rightarrow R$ پوشا $\mathrm{\#}$ پ

تمرين ^. ثابت كنيد تابع $f: R \rightarrow R$ كه در رابطهى زير صدق مىكند پوشا است؟ $f(x+f(f(y)))=x+f(y) \quad(\forall x, y \in R)$
راهنمايى: مىدانيم $f(A)$ پوشا است بايد بگوييم
 دهيد و نتيجه بگيريد عبارت $B=x+c$ پوشا است.
(*) در اين كتاب با دو نماد رياضى » دارد x عضو R

 حل: بله. تابع $f(x)$ در شكل مقابل پوشا است.
همحنْين تابع $g: R \rightarrow R$ نيز صعودى مىباشد.

مثال((ث ثابت كنيد تابع

$$
\begin{aligned}
& \left.\begin{array}{l}
x \geq y \\
x^{\mu} \geq y^{\mu}
\end{array}\right\} \Rightarrow x+x^{\mu} \geq y+y^{\mu} \Rightarrow f(x) \geq f(y) \quad \text { حل: اكر } x \geq y \\
& \text { بنابراين f تابعى صعودى است. }
\end{aligned}
$$

مثال (ه اگر تابع $f: R \rightarrow R$ صعودى باشد، ثابت كنيد ($f(f(x)$ نيز صعودى است.

 $f(g(x)) \geq f(g(y))$ از اين كه


```
تمرين "ا. تمام توابع صعودى \(f: R \rightarrow R\) را بيابيد كه به ازاى هر x حقيقى داشته باشيه: \(f(f(x))=1-x\)
```



``` تابعى نداريمه.
```

تابع نزولى

تابع

$\left.\begin{array}{l}-r x \leq-r y \\ -x^{r} \leq-y^{r}\end{array}\right\} \Rightarrow-r x-x^{\mu} \leq-r y-y^{r} \Rightarrow f(x) \leq f(y)$
حل: اگر $x \geq y$ باشد داريم:
بنابراين f تابعى نزولى است.
مثال(f م $\mathrm{F} \rightarrow \mathrm{R}$ تابعى نزولى باشد ثابت كنيد (1) $f(f(x)$ تابعى صعودى است.

از آنجا كه با فرض $x \geq y$ نتيجه كرفتيم ($x \geq$ (
تمرين lا. اگر R R $R \rightarrow$ تابعى نزولى باشد، ثابت كنيد (f ($f(f(f(x)$ تابعى نزولى است.

مثال(II توابع f, $g: R \rightarrow R$ مفروضاند. به گونهاى كه f صعودى و f نزولى است. ثابت كنيد ($f(g(x)$ تابعى نزولى است.
حل: اگر

تمرين ا. تمام توابع نزولى $f: R \rightarrow R$ را بيابيد كه به ازاى هر x حقيقى داشته باشيم: $f(f(x))=1-x$
راهنمايی: از اين كه (f) f(x) تابعى صعودى و تابع x - ا نزولى است استفاده نماييد و بگوييد چنين تابعى نداريم.
آشنايى با توابع
آشنايى با توابع

نابع اكيداً صعودى

 مطابق شكل تابع $f(x)=x^{\mu}$ تابعى اكيداً صعودى است.

همچنين توابع $\left.f(x)=\tan x, f(x)=\sin , \frac{\pi}{r}\right)$ به ازاى $x \in\left(\begin{array}{l}\text { اكيداً صعودى مى باشند. }\end{array}\right.$ مثال((H) ثابت كنيد توابع صعودى و يكى به يك، اكيداً صعودى نيز هستند. حل: با فرض $x>y$ و بنابر صعودى بودن تابع $f(x)$ داريم:
$x>y \Rightarrow f(x) \geq f(y)$

$$
\text { از طرفى بنابر يك به يک بونن f با فرض x>y مىتوان گفت } f(x) \neq f(y) \text {.يس داريم: }
$$

$$
x>y \Rightarrow f(x)>f(y)
$$

 $\left.\begin{array}{l}f(x)>f(y) \\ g(x)>g(y)\end{array}\right\} \Rightarrow f(x) . g(x)>f(y) . g(y) \quad$ حل: بله. اگر $x>y$ به اين نكته دقت كنيد كه با توجه به مثبت بودن مقادير $g(x), f(x)$ توانستيم طرفين نا برابر ها را درهم ضرب كنيه.

تمرين ّا. توابع اكيداً صعودى $f, g: R \rightarrow R$ مفروضاند. آيا تابع $f(x) . g(x)$ نيز اكيداً صعودى است؟

تمرين عا. توابع اكيداًصعودى $f, g: R^{+} \rightarrow R^{+}$مفروض هستند. آيا تابع $f(x) . g(x)$ نيز اكيداً $f(x)$

مثال(0) آيا هر تابع يك به يك اجباراً اكيداً صعودى يا اكيداً نزولى است؟

حال مىتوانيد به اين فكر كنيد كه آيا تابع يك به يك پاسخ منفى است. سعى كنيد مثالى بيابيد!

$$
f(n)= \begin{cases}r & n=1 \\ 1 & n=r \\ n & n \in\{r, r, \ldots\}\end{cases}
$$

تابعى لزوماً اكيداً نزولى است؟

تابع متناوب
تابع $f: A \rightarrow B$ را متناوب گوييم، هر گاه دوره تناوب حقيقى $f \neq 0$ وجود داشته باشد كه:
$f(x)=f(x+T) \quad \forall x \in A($ به طورى كه $x+T \in A)$

تمرين 10. اگر Tدورهى تناوب تابع 7 ت $f: R \rightarrow R$ باشد، نشان دهيد به ازاى هر n طبيعى مقدار $n T$ نيز دورهى تناوب آن است؟

حدس میزنيم $T=\pi$ دوره تناوب (x) $f(x)$ است(به سادگى اين مسئله را بررسى نماييد.)
حال با توجه به اين كه $T=\frac{\pi}{r}$ دوره تناوب نيست، پس همان $T=\pi=\pi$ كمترين دوره تناوب است.

> تمرين \&1. كوچكترين دوره تناوب تابع $f(x)=\sin x+\cos x$ را بيابيد. راهنمايی: $T=\pi$ كمترين دوره تناوب مى باشد.

تمرين گا. تابع بر رسى نماييد.

مثال(19 آيا هر تابع متناوب داراى كوچكترين دوره تناوب است؟

مثال (-) آيا تابع غير ثابت وجود دارد كه هر عدد كويا و ناصفر دوره تناوب آن باشد؟ $f(x)= \begin{cases}1 & x \in Q \\ 0 & x \notin Q\end{cases}$ تمرين ^1. آيا تابع غير ثابت R R A : F داريم كه هم صعودى و هم متناوب باشد؟
 راهنمايى: خير. از اينكه $f(x)=f(x+n T)$ استفاده نماييد(كه در آن 1 آن دوره تناوب و n هر مقدار طبيعى مى تواند باشد)

ييوستگى توابع
$\lim _{x \rightarrow x_{+}^{+}} f(x)=\lim _{x \rightarrow x_{o}^{-}} f(x)=f\left(x_{\mathrm{o}}\right)$ تابع
 $x \in A$

اما هدف از مطرح كردن بحث پيوستگى، آشنايى با ويخگى هاى يك تابع پيوسته و بر رسى رفتار ظاهرى نمودار آن است. جهت آشنايى با اين مهمه به چحند مثال مى يرّ داز يمر.

حل: خير. به عنوان مثال تابع ييوسته و اكيداً صعودى مقابل يوشا نيست. بنابراين تابع ييوسته و اكيداً يكنوا لزوماً يوشا نيست.

مثال (

حل: مىدانيم مجموع دو تابع پيوسته، تابعى پيوسته است (چرا؟؟) و مجموع دو تابع اكيداً صعودى نيز تابعى اكيداً صعودى
 پّس (x) $f(x)$ تابعى اكيداً صعودى و يوشا است.

 ($f(x)=g(x)$)

اكيداً صعودى و پوشا خواهد بود كه دقيقاً يك ريشه خواهِ رياهد داشت
نتيجه: اكر (x) $f(x)$ تابعى پيوسته و اكيداً صعودى و $g(x)$ تابعى اكيداً نزولى، پيوسته و پوشا باشد، آنتاه معادلىى .

مثال (F2) تمام توابع ييوستهى $f(f(x))=\frac{1}{x}$

$$
\begin{aligned}
& \text { حل: تابع } f(x) \text { يك به يك است. زيرا اكر } f\left(x_{1}\right)=f\left(x_{\text {ب }}\right. \text { باشد داريم: } \\
& f\left(x_{1}\right)=f\left(x_{Y}\right) \Rightarrow f\left(f\left(x_{1}\right)\right)=f\left(f\left(x_{Y}\right)\right) \Rightarrow \frac{1}{x_{1}}=\frac{1}{x_{Y}} \Rightarrow x_{Y}=x_{Y}
\end{aligned}
$$

 قطعاً اكيداً صعودى خواهد بود. از طرفى $f(f(x))$ جواب ندارد. $f(f(x))=\frac{1}{x}$

حل: اگر تابع $f(x)=f(x)+x$ ييوسته باشد، آنگاه تابع
 $\mathrm{g}(x)= \begin{cases}\text { عدد كد كنگگ } & x \neq Q \\ \text { كدنگ, } & x \notin Q\end{cases}$

$$
\begin{aligned}
& \text { اما تابع غير ثابت } g(x) \text { نمىتواند پيوسته باشد(چرا؟)، پس تابع پيوسته (x } f(x) \text { با شرايط مسئله وجود ندارد. } \\
& \text { به عنوان تمرين حالتى كه }
\end{aligned}
$$

روشهاى
 كاسيك

حل معادلات تابعى

معادلات تك متغير

اكنون مى خواهيم به حل معادلات تابعى بيرداز يم. در اين معادلات هدف ما يافتن
مجهول ما است كه قرار است بر حسب x بهدست آيد.

مثال (1) تمام توابع \rightarrow (1) $f: R-\{1,-1\}$ را بيابيد كه:

$$
\begin{aligned}
& x^{r} f(x)-f(-x)=x \quad(\forall x \in R-\{1,-\mid\}) \\
& P(x): x^{r} f(x)-f(-x)=x \quad \text { حل: فرض كنيد } P(x) \quad \text { بيانگر معادلهى اصلى مسئله باشد. داريم: } \quad x^{r} f(-x)-f(x)=-x \\
& P(-x)
\end{aligned}
$$

اكنون دو معادله داريمم و دو مجهول ($f(x)$ و $f(-x)$ مجهول هستند)، كه از حل آن داريم:
$\left.\begin{array}{l}x^{r} f(x)-f(-x)=x \\ x^{r} f(-x)-f(x)=-x\end{array}\right\} \Rightarrow f(x)=\frac{x^{\mu}-x}{x^{\mu}-1} \quad(\forall x \in R-\{1,-1\})$
مثال((Y) تمام توابع $f: R \rightarrow R$ را بيابيد كه به ازاى هر x حقيقى داشته باشيه:
$x(f(x)+f(-x)+r)+r f(-x)=0$
 $f(x)=x \quad(\forall x \in R) \quad$ است. از جايگَارى اين نتيجه در $f(x)+f(-x)=$. $P(x)$
(\%) لطفاً قبل از شروع به مطالعهى روشهاى كلاسيك به نحومى مطالعهى آن در مقدمه بيردازيد.

مثال (P) تمام توابع + ($f: R^{+} \rightarrow R^{+}$بيابيد كه به ازاى مقدار مفروض $\alpha \in R$ داشته باشيه: $\alpha x^{r} f\left(\frac{1}{x}\right)+f(x)=\frac{x}{x+1}\left(\forall x \in R^{+}\right)$
$P(x): \alpha x^{r} f\left(\frac{1}{x}\right)+f(x)=\frac{x}{x+1} \quad$ حل: اكر $P(x)$ بيانگر معادلهى اصلى مسئله باشد، داريم: $P\left(\frac{1}{x}\right): \frac{\alpha}{x^{r}} f(x)+f\left(\frac{1}{x}\right)=\frac{1}{x+1}$

از حل دو معادله دو مجهول اخير (كه $f\left(\frac{1}{x}\right)$ مجهولهاى آن هستند) داريم:
$f(x)=\frac{1}{\alpha^{r}-1}\left(\frac{\alpha x^{r}}{x+1}-\frac{x}{x+1}\right) \quad\left(\forall x \in R^{+}\right)$
مثال (8) تمام توابع $f: R \rightarrow R$ را بيابيد كه به ازاى هر عدد حقيقى ا- و $x \neq 1$ داشته باشيه: $f\left(\frac{x-\mu}{x+1}\right)+f\left(\frac{\mu+x}{1-x}\right)=x$ حل: اگر به جاى x مقدار
$f\left(\frac{\mu+x}{1-x}\right)+f(x)=\frac{x-\mu}{x+1}$
و اكر به جاى x مقدار
$f\left(\frac{x-\mu}{x+1}\right)+f(x)=\frac{x+\mu}{1-x}$
$f(x)=\frac{x^{\mu}+\vee x}{r\left(1-x^{r}\right)} \quad(\forall x \neq 1,-1)$
مثال (ه) تمام توابع R ه

$$
f(x)+f\left(\frac{x-1}{x}\right)=1+x \quad(\forall x \in R-\{1,0\})
$$

حل: فرض كنيد P(x) بيانگَر معادله ى اصلى مسئله باشد. داريم:

$$
P(x): f(x)+f\left(\frac{x-1}{x}\right)=1+x
$$

$$
P\left(\frac{x-1}{x}\right): f\left(\frac{x-1}{x}\right)+f\left(\frac{1}{1-x}\right)=1+\frac{x-1}{x}
$$

$$
P\left(\frac{1}{1-x}\right): f\left(\frac{1}{1-x}\right)+f(x)=1+\frac{1}{1-x}
$$

$$
f(x)=\frac{\left(1+x+\frac{1}{1-x}-\frac{x-1}{x}\right)}{r} \quad(\forall x \in R-\{\cdot, 1\})
$$

مثال (8) تمام توابع \rightarrow ($f: R-\{1, \circ,-1\}$ را بيابيد كه:
$f\left(\frac{1+x}{1-x}\right)+f(x)+f\left(\frac{x-1}{x+1}\right)=\frac{-1}{x} \quad(\forall x \in R-\{0,1,-1\})$
حل: فرض كنيد P(x) بيانگر معادلهى اصلى مسئله باشد. داريم:
$P(x): f\left(\frac{1+x}{1-x}\right)+f(x)+f\left(\frac{x-1}{x+1}\right)=\frac{-1}{x}$
$P\left(\frac{x+1}{1-x}\right): f\left(\frac{-1}{x}\right)+f\left(\frac{x+1}{1-x}\right)+f(x)=\frac{x-1}{x+1}$
$P\left(\frac{x-1}{x+1}\right): f(x)+f\left(\frac{x-1}{x+1}\right)+f\left(\frac{-1}{x}\right)=\frac{x+1}{1-x}$
$P\left(\frac{-1}{x}\right): f\left(\frac{x-1}{x+1}\right)+f\left(\frac{-1}{x}\right)+f\left(\frac{1+x}{1-x}\right)=x$
از حل دستگاه جهار معادله و جهار مجهول اخير داريم:
$f(x)=\frac{1}{r}\left(\frac{-1}{x}+\frac{x-1}{x+1}+\frac{x+1}{1-x}-r x\right)$
مثال (V تمـام توابـع $ل$ (باشيه:

$$
f(x)+f\left(\frac{1}{1-x}\right)=\frac{r(1-r x)}{x(1-x)}
$$

حل: فرض كنيد P(x) بيانتر معادلهى اصلى مسئله باشد. دار يم:

$$
P(-1) \Rightarrow f(-1)+f\left(\frac{1}{r}\right)=-r
$$

$$
P\left(\frac{1}{r}\right) \Rightarrow f\left(\frac{1}{r}\right)+f(r)=0
$$

$$
P(r) \Rightarrow f(r)+f(-1)=r
$$

است، بنابراين o =0 (1) ما را به تناقض مى رساند. پس چنين تابعى نداريم.

مثال (^) تمام توابع $f\left(x-\frac{1}{x}\right)=x^{\mu}-\frac{1}{x^{\mu}}$
حل: از آنجا كه $x-\frac{1}{x}$ يك عبارت يوشا است. يعنى تمام مقادير حقيقى را توليد مىكند (زيرا $x-\frac{1}{x}=A$ همان
 $f(x)=x^{\mu}+\mu x \quad(\forall x \in R)$

تمرينات

I. $\uparrow f(x)+x f\left(\frac{1}{x}\right)=x+1$

مقدار $f\left(\Gamma_{\circ} \mid \boldsymbol{f}\right)$ را بيابيد.
r. تمام توابع $f: \mathbb{R}-\{0,1\} \rightarrow \mathbb{R}$ را بيابيد به نحوى كه داشته باشيم: $f(x)+f\left(\frac{1}{1-x}\right)=1+\frac{1}{x(1-x)}$ $(\forall x \in R-\{\circ, \mid\})$

س. تمام توابع $f: R \rightarrow R$ را بيابيد كه به ازاى هر x حقيقى و ناصفر داشته باشيم: $f\left(\frac{1}{x}\right)+f(1-x)=x$

ع. عا فرض $f(1-x)+a f(1+x)=(a+1) x^{r}+r(a-1) x+r(a+1)$
0. تمام توابع $f: R-\{\circ, \mid\} \rightarrow R$ را بيابيد كه به ازاى هر x حقيقى و مخالف ه و 1 داشته باشيم: $f(x)+r f\left(\frac{1}{x}\right)+r f\left(\frac{x}{x-1}\right)=x$

پاسخ تمرينات

مقادير (o f) و (1) $f(1)$ هر مقدارى میتوانند داشته باشند:
$f(x)=\left\{\begin{array}{lc}\frac{1}{r x}-\frac{x}{r}-\frac{1}{r(x-1)} \\ a & x=\circ \\ b & x=1\end{array}\right.$
ع. فرض كنيد $P(x)$ بيانگر معادلهى اصلى مسئله باشد. از ممنونمعادلات P ع $P(x-1$ ($P(1-x)$ يكى دستگاه دو معادله و دو مجمول بدست مىآيد كه مجهولهاى آن . $f(r-x), f(x)$
از حل اين دستگاه $f(x)=x^{r}+1 \quad(\forall x \in R)$ بدست مىآيد. ه. فرض كنيد $P(x)$ بيانتَر معادلهى اصلى مسئله باشد به $P\left(\frac{1}{1-x}\right), P\left(\frac{x}{x-1}\right) ، P\left(\frac{1}{x}\right) ، P(x)$ كمك معادلات سعى كنيد $f(x)$ را بدست آوريد.

ا. اكر معادلهى اصلى مسئله را در \uparrow † ضرب كنيم داريم: $1 ヶ f(x)+\uparrow x f\left(\frac{1}{x}\right)=\uparrow x+\uparrow:(1)$
از طرف ديگًر اگر به جاى x مقدار مسئله جايگَذارى كنيم، داريم:
$\uparrow x f\left(\frac{1}{x}\right)+f(x)=1+x:(\Upsilon)$
اكر طرفين معادلات (1) و (Y) را الز هم كم كنيه، داريم: $1 \Delta f(x)=r x+r \Rightarrow f(x)=\frac{1}{\Delta} x+\frac{1}{\Delta}$
$\Rightarrow f(r \cdot \mid \varphi)=\mu \cdot \mu$
$(E): f(x)+f\left(\frac{1}{1-x}\right)=1+\frac{1}{x(1-x)} \forall x \notin\{0,1\}$ $x \rightarrow \frac{1}{1-x} \quad x \notin\{0,1\} \Rightarrow \frac{1}{1-x} \notin\{0,1\} \Rightarrow$ (Er): $f\left(\frac{1}{1-x}\right)+f\left(1-\frac{1}{x}\right)=r-x-\frac{1}{x}$
(E1) $د: ~: x \rightarrow 1-\frac{1}{x}, x \notin\{0,1\} \Rightarrow 1-\frac{1}{x} \notin\{0,1\} \Rightarrow$ $(E r): f\left(1-\frac{1}{x}\right)+f(x)=1+\frac{x^{r}}{x-1}$
$(E)+(E \Upsilon)-(E \Upsilon) \Rightarrow f(x)=x+\frac{1}{x} \forall x \notin\{0,1\}$
س.
$P\left(\frac{1}{x}\right) \quad \Rightarrow \quad f(x)+f\left(\frac{x-1}{x}\right)=\frac{1}{x}$
$P(1-x) \quad \Rightarrow f\left(\frac{1}{1-x}\right)+f(x)=1-x$
$P\left(\frac{x}{-1+x}\right) \Rightarrow f\left(\frac{x-1}{x}\right)+f\left(\frac{1}{1-x}\right)=\frac{x}{x-1}$
اكر طرفين دو معادلهى اول را با قر رينهى معادلهى سوم جمع كنيه، داريم:
$f(x)=\frac{1}{r x}-\frac{x}{r}-\frac{1}{r(x-1)}$

مقدارگَذارىهاى اوليه در معادلات چنـد متغير

يكى از ايدههاى بسيار پر كاربرد در حل معادلات تابعى اين است كه به جاى متغيرها مقاديرى بگَذاريم كه معادلهى مورد نظر را سادهتر نمايد.
和 $f(x)$
اما اين كه چه مقدار گذارىهايى در حل مسئله مورد نظر تان كاربرد دارد نكتهاى است كه شما را به فكر كردن در مورد مسايل زير وا مىىارد.
مثال (1 تمام توابع 1 ($f: R \rightarrow$ را بيابيد كه به ازاى هر x و x حقيقى داشته باشيم: $f(x+y)+f(x-y)=r x$

مثال (P تمام توابع $f: R \rightarrow R$ را بيابيد كه به ازاى هر x و $\begin{aligned} & \text { حقيقى داشته باشيه: }\end{aligned}$ $f(x y)+f(x)=x y+x$

حل: اگر در معادلهى اصلى مقدار $y=1$ را بگخاريم، داريم: $r f(x)=r x \Rightarrow f(x)=x \quad(\forall x \in R)$

11

مثال (H تمام توابع $f(x y)+g(x)=x y+x$

$$
\text { حل: ابتدا } y=\text { را قرار مىدهيم و نتيجه مى گيريم: }
$$

$f(\circ)+g(x)=x \Rightarrow g(x)=x-c(1) c=f(\circ))$
از جايگذارى نتيجهى بهدست آمده در معادلهى اصلى مسئله داريم:
$f(x y)+x-c=x y+x \Rightarrow f(x y)=x y+c \Rightarrow f(x)=x+c \quad(\forall x \in R)$

مثال(ع تمام توابع $f: R \rightarrow R$ را بيابيد كه به ازاى هر x و y حقيقى داشته باشيم: $f(x+y)+f(x)=r x+y$ حل: با قرار دادن y=-x داريم:
$f(\circ)+f(x)=x:(1)$ با قرار دادن x=y=0 در معادلهى اصلى مسئله داريم:
$r f(\circ)=\circ \Rightarrow f(\circ)=\circ:(r)$ از قرار دادن نتيجهى (Y) در نتيجهى (() داريم:
$f(x)=x \quad(\forall x \in R)$
مثال (ه تمام توابع $f(f(x)-y)+r f(x)=r x-y$ حل: با قرار دادن $y=f(x)$ داريم:
$f(\cdot)+r f(x)=r x-f(x)$
$\Rightarrow \mu f(x)=\mu x-f(\circ) \Rightarrow f(x)=x-\frac{f(\circ)}{\mu}:(1)$
 $f(x)=x \quad(\forall x \in R)$

مثال() تمام توابع f:R R را بيابيد كه براى اعداد حقيقى a، b و c داشته باشيم: $f\left(a^{\mu}\right)+f\left(b^{\mu}\right)+f\left(c^{\mu}\right)=f(r a b c)$
 اصلى جواب $f(x)=0$ بدست مى آيد.

مثال (Y تمام توابع $f(x)^{f(y)} \cdot f(y)^{f(x)}=x^{y} y^{x}$
$f(1)^{r f(1)}=1 \Rightarrow f(1)=1 \quad$ حل $x=y=1$ ح معادلهى اصلى مسئله داريم: $f(x)=x \quad\left(\forall x \in R^{+}\right) \quad y=1$ از y د معادلهى اصلى مسئله، نتيجه میى

مثال ه هتمام توابع $f: Z \rightarrow R$ را بيابيد كه:
$f(m+n)+f(n-m)=f\left({ }^{\mu} n\right) \quad(\forall m, n \in Z-\{\circ\})$ حل: اكر به جاى m قرار دهيم nr، داريم: $f(\mu n)+f(-n)=f(\uparrow n) \Rightarrow f(-n)=\circ \quad(\forall n \in Z-\{\circ\})$ حال اگر در معادلهى اصلى مسئله قرار دهيم $m=n \neq 0$ ، داريم: $f(\uparrow n)+f(\circ)=f\left({ }^{\mu} n\right) \quad \Rightarrow f(\circ)=\circ$ بنابراين داريم:
$f(n)=。 \quad(\forall n \in Z)$

$$
\text { مثال(} 9 \text { توابع } \text { (} f \text { : } R \rightarrow R \text { را بيابيد كه: }
$$

$x f(y)+y f(x)=(x+y) f(x) \cdot f(y) \quad(\forall x, y \in R)$
حل: از قرار دادن x= x در معادله اصلى مسئله داريم: $r x f(x)=r x f(x)^{r} \Rightarrow f(x)=\circ$ (با فرض $)$
 حال بايد جوابهايى به فرم تابع دو ضابطهاى
اكر عدد $a \in R-A$ و $a \in R-A$ را به ترتيب به جاى x و y در معادلهى اصلى مسئله قرار دهيم، داريم: $a f(b)+b f(a)=(a+b) f(a) . f(b)$
$\Rightarrow a f(b)+\circ=\circ a=\circ$
بنابراين تنيا تابع دو ضابطهاى صادق در معادله تابعى مورد نظر به صورت زير است. $f(x)= \begin{cases}0 & x=0 \\ 1 & x \neq 0\end{cases}$

پس جوابهاى مسئله عبار تند از:
$f(x)=\circ(\forall x \in R), f(x)=1 \quad(\forall x \in R), f(x)= \begin{cases}0 & x=\circ \\ 1 & x \neq \circ\end{cases}$
مثال (1.) تمام توابع غير ثابت صفر F : $\mathrm{F} \rightarrow \mathrm{R}$ را بيابيد كه:
$f(x) . f(y)=f(x-y) \quad(\forall x, y \in R)$
حل: فرض كنيد P(x,y) بيانگر معادلهى اصلى مسئله باشد. داريم: $P(\circ, \circ) \Rightarrow f(\circ)^{r}=f(\circ) \Rightarrow f(\circ)=\circ \quad \mathrm{l} \quad f(\circ)=1$
$P(x, \circ) \Rightarrow f(x) \cdot f(\circ)=f(x) \Rightarrow \circ=f(x) \quad(\forall x \in R)$

با توجه به اين كه نتيجهى حاصل با فرض غير ثابت صفر بودن f(x) در تناقض است، بنابراين ا= 1 (f مى 1 مباشد. از طرفى داريم:
$P(x, x) \Rightarrow f(x)^{r}=f(0) \Rightarrow f(x)^{r}=1 \Rightarrow f(x)=1$ ᄂ $f(x)=-1$
$P(\uparrow x, x) \Rightarrow f(x) \cdot f(\uparrow x)=f(x)$
$f(x) \neq \circ \forall x \in R \quad \Rightarrow \quad f(\uparrow x)=1 \quad(\forall x \in R)$
بنابراين تنها جواب مسئله ($f(x)=1 \quad$ مى \quad میاشد.
مثال (II تمام توابع $f: R \rightarrow R$ را بيابيد كه:
$f(x y)=\frac{f(x)+f(y)}{x+y} \quad(\forall x, y \in R)$
حل: فرض كنيد P(x,y) بيانگر معادلهى اصلى مسئله باشد، داريم:
$P(\circ, 1) \Rightarrow f(1)=\circ$

$$
\text { با توجه به اينكه ه= (} f(1 \text { است داريم: }
$$

$P(x, 1) \Rightarrow x f(x)=\circ \Rightarrow f(x)=\circ \quad \forall x \in R-\{\circ\}$
از طرف ديگر داريم:
$P(x, \circ) \Rightarrow f(\circ)=\circ$
بنابراين تنها جواب مسئله $f(x)=\circ \quad(\forall x \in R)$ مى $f(x)$
مثال (1) تمام توابع f (1) $f: R^{+} \rightarrow R^{+}$را بيابيد كه براى هر x و y حقيقى و مثبت داشته باشيه: $f(x+y)=f(x)+y$

حل: فرض كنيد P(x,y) بيانتر معادله ى اصلى مسئله باشد، داريم:

اكر در معادلهى (*)، مقدار $y=1$ ر ا قرار دهيم، داريم:

$$
f(x)+1=f(1)+x \Rightarrow f(x)=x+\underbrace{f(1)-1}_{a}
$$

$\Rightarrow f(x)=x+a \quad\left(\forall x \in R^{+}\right)$
از آنجا كه $f: R^{+} \rightarrow R^{+}$است، بنابراين a نمى تواند مقدارى منفى باشد (چرا؟؟)
همرحنين از جايگَذارى
$f(x+y)=f(x)+y \quad \Rightarrow x+y+a=x+a+y$
پس توابع زير در معادلهى اصلى صدق مى كنند:
$f(x)=x+a \quad\left(\forall x \in R^{+}, a \in R^{+} \bigcup\{0\}\right)$

